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Introduction

In our previous slide set on discriminant analysis, we saw
how, with two groups, a linear discriminant function could,
under certain circumstances, lead to an optimal rule for
classifying observations into two groups on the basis of a
set of measurements.
In that slide set, we concentrated on the discrimination
part of discriminant analysis, i.e., how to discover which
dimension(s) in the data optimally discriminate between
groups.
We saw that there is, indeed, an intimate connection
between discriminant analysis and MANOVA.
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Introduction

In this slide set, we concentrate on the classification side of
discriminant analysis.
We take a deeper look at how observations are classified
into a group via a classification rule, how to evaluate the
success of such a rule, and how to deal with a situation in
which the rule works poorly.
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The Linear Classification Function

The process of classification with linear discriminant
functions can be viewed in several equivalent ways. In the
Discriminant Analysis slides, we discussed one approach
which involves comparing two groups by computing a
difference of their discriminant scores from a cutoff value.
An alternative approach that generalizes immediately to
multiple groups is to classify the jth vector of observations
xj by computing for each group i a weighted (squared)
distance score from xj to the ith group centroid

Di(xj) = (xj − xi)
′S−1(xj − xi) (1)

and assign the jth observation to the group for which
Di(xj) is a minimum. We can refer to Di(xj) as a
quadratic classification function as it is a quadratic form.
By expanding Equation 1 eliminating terms that do not
involve i, and multiplying by −1/2, we can determine an
equivalent linear classification function

Li(xj) = x′iS
−1x− 1

2
x′iS

−1xi (2)

The j observation is assigned to the group for which Li(xj)
is a maximum.
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Incorporating Prior Probabilities

If the probabilities of group membership are not equal, and
group i occurs with probability pi, then the linear
classification function Li(xj) can be modified as follows to
optimize the classification if the population distributions
are multinormal with equal covariance matrices:

L∗i (xj) = ln pi + x′iS
−1x− 1

2
x′iS

−1xi (3)

= ln pi + Li(xj) (4)
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Quadratic Classification Functions

If population covariance matrices differ across groups, then
the linear classification approach discussed in the previous
section is, in general, no longer optimal.
A modified approach minimizes the (squared) distance
function

Di(xj) = (xj − xi)
′S−1i (xj − xi) (5)

where Si is the sample covariance matrix for the ith group.
Note that unless ni is greater than p, the number of
predictors in x, then Si will be singular and the quadratic
method cannot be used.
If we assume multivariate normality, with prior
probabilities for the groups of pi, i = 1, . . . k, then the
optimal rule can be written as follows: Assign vector of
scores xj to the group for which

Qi(xj) = ln pi −
1

2
ln |Si| −

1

2
(xj − xi)

′S−1i (xj − xi) (6)

is a maximum.
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Estimating Misclassification Rates

Once observations in the sample are classified, one may
examine the accuracy of the rule created from the sample
in classifying the observations in that sample.
The result is a Classification Table that allows one to
estimate both the proportion of observations correctly
classified and the proportion of observations misclassified.
We return to the football data set for an example.
> library(car)

> library(MASS)

> source(

+ "http://www.statpower.net/Content/312/R Stuff/Steiger R Library Functions.txt")

> fb.data <- read.table(

+ "http://www.statpower.net/Content/312/Lecture Slides/football.txt",header=T,sep=",")

> x <- as.matrix(fb.data[,2:7])

> Group <- as.matrix(fb.data[,1:1])

> source(

+ "http://www.statpower.net/Content/312/R Stuff/ClassifyCode.r")
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Estimating Misclassification Rates

The function Classify classifies observations according to
either a linear or quadratic rule, and computes the
Classification Table and error rates as well.
> out <- Classify(x,Group)

> head(out$Results)

Group Classified WDIM CIRCUM FBEYE EYEHD EARHD JAW L1 L2 L3

1 1 1 13.5 57.15 19.5 12.5 14.0 11 581.4637 577.4368 578.0970

2 1 1 15.5 58.42 21.0 12.0 16.0 12 657.9577 655.0008 655.6722

3 1 2 14.5 55.88 19.0 10.0 13.0 12 566.7910 570.0252 568.8719

4 1 1 15.5 58.42 20.0 13.5 15.0 12 637.3580 632.5968 634.4554

5 1 1 14.5 58.42 20.0 13.0 15.5 12 637.5758 630.7129 631.4172

6 1 1 14.0 60.96 21.0 12.0 14.0 13 659.0424 653.1503 652.0075

> out$Classification.Table

Classified

Group 1 2 3

1 26 1 3

2 1 20 9

3 2 8 20

> out$Proportion.Correct

[1] 0.7333333

> out$Error.Rate

[1] 0.2666667
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Estimating Misclassification Rates

From the Classification Table, it is clear that it is easy to
classify members of Group 1, while there are plenty of
misclassifications that result from confusing Groups 2 and
3.
Looking back at the plot of canonical discriminant scores,
it is easy to see why this is true.

> D <- Make.D(Group)

> H <- Make.H(Group)

> Plot.Discriminant.Scores(x,D,H,Group)
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Estimating Misclassification Rates

Using a quadratic rule improves the classification rates a
bit.

> out <- Classify(x,Group,quadratic=TRUE)

> out$Classification.Table

Classified

Group 1 2 3

1 27 1 2

2 2 21 7

3 1 4 25

> out$Proportion.Correct

[1] 0.8111111

> out$Error.Rate

[1] 0.1888889
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Bias in Error Rate Estimation

Just as with R2 in multiple regression, error rates obtained
by applying a sample-based classification function to the
same sample will be optimistic.
One approach to de-biasing the error rate estimates is
classical cross-validation, i.e., splitting the sample into a
training sample and a test sample, and applying
classification functions from one sample to the data in the
other.
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Bias in Error Rate Estimation
The Holdout Method

An alternative approach is the leave-one-out or holdout
method.
With this approach, each observation vector is classified
using classification functions calculated from all the data
but that observation.
Error rates are then estimated from the classification table.
This method is, of course, more computationally intensive
than the standard approach.
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Bias in Error Rate Estimation
The Holdout Method

The holdout method can be employed by using the
function Leave.One.Out.
This function repeatedly employs a service function
Make.Classification.Function which returns the
classification functions for any input data set, and thus can
be immediately employed to predict the class of a new
input vector.

> out <- Leave.One.Out(x,Group)

> out$Classification.Table

Classified

Group 1 2 3

1 26 1 3

2 1 18 11

3 2 9 19

> out$Proportion.Correct

[1] 0.7

> out$Error.Rate

[1] 0.3
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Error Rates in Variable Selection

Some authors, such as Rencher (in Chapter 9 of the second
edition of his text) suggest combining error rate
information with Wilks’ Λ in assessing which variables to
employ by means of a stepwise discriminant analysis.
That is, a small improvements in Λ from adding a variable
that is not accompanied by improvements in error rate
might be considered illusory.
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Classification via the k Nearest Neighbor Rule

Linear and Quadratic discriminant analysis are based on
the supposition of a multivariate normal distribution.
Other methods are available that do not make that
assumption.
Fix and Hodges (1951) proposed the k nearest neighbor
rule.
In this approach, we calculate the distance matrix between
all observations using the function

Dij = (xi − xj)
′S−1(xi − xj)

If sample sizes are equal, we then assign observation xj to
the class occupied by the majority of its k nearest
neighbors. That is, for each of the k nearest neighbors, we
compute ki, the number that are in class i, and the class
with the largest ki is chosen.
If sample sizes are unequal, we assign to the class i for
which ki/ni is a maximum.
If prior probabilities are incorporated, assign observation
xj to the class i for which piki/ni is a maximum.
Of course, k must be chosen judiciously. Some authors
suggest setting k =

√
n for a “typical” group size n, while

others suggest trying several values of k and settling on the
one that produces the smallest error rate.
The k-nearest neighbor method is implemented in the
class library.
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Classification via the k Nearest Neighbor Rule

> library(class)

> Classify <- rep(NA,90)

> for(i in 1:90)Classify[i] <- knn(x[-i,],

+ x[i,],Group[-i],k=5)

> table(Group,Classify)

Classify

Group 1 2 3

1 26 2 2

2 0 13 17

3 3 11 16
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